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COMMENTARY

GWAS deems parents guilty by association
Arbel Harpaka,b,1 and Michael D. Edgec

Almost 150 y ago, Galton (1) pitted “nature” against
“nurture.” In asking whether our biological or environ-
mental inheritance is more important in shaping our
traits, Galton implicitly suggested that their effects can
be separated. Galton’s division has always been too
neat. Our genes and environments intertwine to shape
our bodies, capacities, and personalities. The “nature
vs. nurture” dichotomy is particularly badly strained in
interpreting gene-by-environment interactions, in which
the effects of genetic variants depend on the environ-
ment in which they are expressed (2). Another challenge
is gene–environment covariation, in which, for exam-
ple, people’s genotypes make them more likely to be
exposed to particular environments (3). For example,
skin tone—a genetically influenced trait—affects ac-
cess to health care, socioeconomic exposures, and
more (4–6).

In PNAS, Wu et al. (7) analyze a fascinating source
of gene–environment covariation: Our biological par-
ents, who are the sources of our genes, can also shape
our environment. Parental effects on environments—
on prenatal environment, diet, socioeconomic circum-
stances, home environments during childhood, and
more—may in turn be influenced by the parents’ genes.
The alleles of parents can therefore affect a child’s
traits either via the effects they have when inherited
in the genome (“direct genetic effects”) or via their
effect on the environments that parents create (“indi-
rect parental genetic effects”; Fig. 1). Wu et al. provide
new tools for studying such indirect parental genetic
effects using summary data from genome-wide associ-
ation studies (GWASs) (i.e., marker-level summaries that
authors of GWASs typically release, even when they
do not share raw data) and use them to study genetic
effects on birth weight and on educational attainment.

Indirect genetic effects—which need not be paren-
tal and can in principle occur between any pair of in-
dividuals, related or unrelated—have been studied
by quantitative geneticists since at least the 1940s
(8–11). Indirect genetic effects are a sometimes-

crucial influence on the evolution of trait variation
(12), with special relevance for the evolution of social
behavior (13). Recently, Kong et al. (14) energized the
study of indirect genetic effects in humans with analyses
showing their importance for several human traits.
Kong et al.’s approach was pathbreaking in its consid-
eration of indirect genetic effects in human GWASs.
However, their approach required genotype and phe-
notype data from members of the same families; and
although family-level data are experiencing a blissful
resurgence in human genetics (15), they are still not
as common as standard GWAS samples of unrelated
people. Wu et al. introduce an approach based on
standard GWASs, which they call “DONUTS,” for es-
timating indirect parental genetic effects.
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Fig. 1. Alleles of biological parents can affect a trait of
their child either when inherited and expressed in the
child’s genome (“direct genetic effects”; dark blue
arrow) or when they are expressed in a parent and
modify environmental effects on the child’s trait
(“indirect parental genetic effects”; light blue arrows).
DONUTS (7) uses summary statistics from two GWASs to
estimate direct and indirect effects separately: a
standard GWAS of genotype and phenotype of the same
individuals (denoted by the string of chocolate donuts)
and a GWAS of a parent’s genotype and their child’s
phenotype (strawberry donuts).
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The dissection of genetic effects into direct and indirect is
central to several ongoing conversations in human genetics.
Most fundamentally, in understanding how trait differences
between people emerge, direct vs. indirect effects suggest
distinct sets of mechanisms. Secondly—and even in settings
where direct effects are of primary interest, such as in some clin-
ical applications of polygenic scores or in more controversial
applications to embryo selection (16)—problems arise if esti-
mated effects are assumed to be direct when they are in fact
partly indirect. Thirdly, distinguishing direct and indirect ef-
fects may be important for the “portability” problem: Why poly-
genic scores based on GWASs tend to drop in prediction
accuracy in groups that differ in their composition—genetic an-
cestry, socioeconomic, or otherwise—from the GWAS sample
(17, 18). Although the various factors hypothesized to affect
portability are relevant for both direct and indirect effects, the
fact that indirect effects are, by definition, environmentally
mediated—and for some traits plausibly culture-bound—may
in itself suggest they would port poorly across groups of
people (18).

To understand how indirect genetic effects are estimated, it is
helpful to think about the sources of GWAS effect estimates (19).
In a standard GWAS, participants’ genotypes are associated with
their phenotypes at hundreds of thousands of markers. If an asso-
ciation is observed between a given marker and a given pheno-
type, there are several possible explanations. First, there may be
one or more genetic variants nearby in the genome that directly
affect the phenotype. [Here, “direct”means only that the variant
affects an individual’s phenotype because the individual inherits
it. Direct effects in this sense might nonetheless be mediated via
biological, environmental, and social factors. For example, some
of the variants most strongly associated with lung cancer risk
appear to operate via their effects on smoking behavior (see
box 1 in ref. 20).] This is the main signal that GWASs were
designed to capture. Second, the marker may be near variants
that have familial indirect effects on the genotype. Because the
genotypes of GWAS participants are correlated with those of
their biological relatives, indirect effects will lead to an association
between the genotype and phenotype of participants. Addi-
tional sources of association signals are genetic or environmental
confounding—as might be caused, for example, by population
stratification or assortative mating (21)—and sampling error. Statis-
tical approaches aim to remove confounding—sometimes with less
than complete success (22–24)—and quantify sampling error.
Among these sources, direct and indirect effects are of greatest
interest, but a standard GWAS alone does not distinguish them
from each other.

Methods for estimating direct effects and parental indirect
genetic effects separately (14, 25–28) take advantage of the
fact that the allele that a parent transmits to a child has both a
direct and indirect effect on the child’s phenotype, whereas the
allele that the parent does not transmit has only an indirect ef-
fect. Thus, if genotypes are available for parents and a child, as
well as phenotype data from the child, direct and indirect effects
can be distinguished by comparing the association of the par-
ents’ transmitted and nontransmitted alleles with the child’s
phenotype.

DONUTS relies on a clever approach that, under some
assumptions, can perform the same estimation using only sum-
mary statistics from two or three distinct GWASs, for example
a GWAS associating one’s own genotypes with their pheno-
type, and a second GWAS associating parental genotype with

their child’s phenotype (Fig. 1). DONUTS also accommodates
complications such as assortative mating in the parental gener-
ation, sample overlap in the GWASs that are sources of the
summary statistics, and indirect effects that differ by parent
of origin.

In PNAS,Wu et al. analyze a fascinating source of
gene–environment covariation: Our biological
parents, who are the sources of our genes, can
also shape our environment.

Although samples of parental genotypes alongside their child-
ren’s phenotypes are currently uncommon, they are likely less bur-
densome to collect than full family data. Wu et al. therefore expand
the possibilities for studying direct and indirect genetic effects
in humans.

With the example of birth weight, Wu et al. show that DONUTS’
estimates of indirect parental effects agree closely with those from
methods using individual-level data (26). They also use their frame-
work to explore previously observed genetic correlations between
educational attainment and other traits. Educational attainment is
of special interest in part because of prior evidence of sizeable
parental indirect effects (14, 25). Wu et al. show that many of the
known genetic correlations with educational attainment that they
examine—including with taller height, lower body mass index, less
active smoking behavior, and better health outcomes—are mostly
explained by indirect effects on educational attainment. In turn,
the genetic correlation between educational attainment and au-
tism spectrum disorder is mostly attributable to direct effects on
educational attainment.

DONUTS extends the study of indirect genetic effects to
settings closer to traditional GWASs, and at the same time Wu
et al.’s empirical findings highlight the value of family-based de-
signs. Direct and indirect genetic components, as well as indirect
genetic components from distinct relatives—for example, moth-
ers and fathers—can in principle behave differently, suggesting
distinct explanations for observed genetic correlations involving
overlapping sets of traits. This information is inaccessible in a typ-
ical GWAS, which confounds direct and indirect effects.

As Wu et al. carefully note, systematic biases like those due to
population stratification or assortative mating remain a threat for
any GWAS with “unrelated” participants. Statistical methods have
been successful in alleviating the bias at any given marker, but the
threat is aggravated when signals frommany markers are summed
in the same analysis, such as when working with polygenic risk
scores (18, 24). Family-based designs can eliminate such con-
founding from population stratification and assortative mating.
For example, if genetic differences between full biological sib-
lings are associated with differences in phenotype, then stratifica-
tion is not a possible explanation: Such genetic differences are
caused by random Mendelian segregation alone, which is not
plausibly confounded by other causal factors.

The main drawback of such family designs relates to statistical
power. The largest samples available are composed of sibling
pairs and remain an order of magnitude smaller than standard
GWAS samples of unrelated individuals in the biobank era [although
see a recent advance toward closing this gap by Howe et al. (15)].
For this and other reasons, such as lower genetic variation within
families than across unrelated individuals, family-based GWASs
are likely to remain less powerful than standard GWASs for the
foreseeable future (15, 18).
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Approaches like those of Wu et al. thus extend the scope of
GWASs for understanding complex trait variation. Human genet-
icists struggle to address two features of genetic associations with
complex traits: on the one hand, small marginal effect sizes that
are only detectable with large association studies, and on the other,
a subtle interplay of genetics and environment, calling for more
informative designs. DONUTS represents a step toward marrying

the power of standard GWASs with the articulation and control of
family designs.
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